skip to main content


Search for: All records

Creators/Authors contains: "Malik, Hafiz"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The safety-critical nature of vehicle steering is one of the main motivations for exploring the space of possible cyber-physical attacks against the steering systems of modern vehicles. This paper investigates the adversarial capabilities for destabilizing the interaction dynamics between human drivers and vehicle haptic shared control (HSC) steering systems. In contrast to the conventional robotics literature, where the main objective is to render the human-automation interaction dynamics stable by ensuring passivity, this paper takes the exact opposite route. In particular, to investigate the damaging capabilities of a successful cyber-physical attack, this paper demonstrates that an attacker who targets the HSC steering system can destabilize the interaction dynamics between the human driver and the vehicle HSC steering system through synthesis of time-varying impedance profiles. Specifically, it is shown that the adversary can utilize a properly designed non-passive and time-varying adversarial impedance target dynamics, which are fed with a linear combination of the human driver and the steering column torques. Using these target dynamics, it is possible for the adversary to generate in realtime a reference angular command for the driver input device and the directional control steering assembly of the vehicle. Furthermore, it is shown that the adversary can make the steering wheel and the vehicle steering column angular positions to follow the reference command generated by the time-varying impedance target dynamics using proper adaptive control strategies. Numerical simulations demonstrate the effectiveness of such time-varying impedance attacks, which result in a non-passive and inherently unstable interaction between the driver and the HSC steering system. 
    more » « less
  2. There are a variety of ways, such as reflashing of targeted electronic control units (ECUs) to hijacking the control of a fleet of wheeled mobile robots, through which adversaries can execute attacks on the actuators of mobile robots and autonomous vehicles. Independent of the source of cyber-physical infiltration, assessing the physical capabilities of an adversary who has made it to the last stage and is directly controlling the cyber-physical system actuators is of crucial importance. This paper investigates the potentials of an adversary who can directly manipulate the traction dynamics of wheeled mobile robots and autonomous vehicles but has a very limited knowledge of the physical parameters of the traction dynamics. It is shown that the adversary can exploit a new class of closed-loop attack policies that can be executed against the traction dynamics leading to wheel lock conditions. In comparison with a previously proposed wheel lock closed-loop attack policy, the attack policy in this paper relies on less computations and knowledge of the traction dynamics. Furthermore, the proposed attack policy generates smooth actuator input signals and is thus harder to detect. Simulation results using various tire-ground interaction conditions demonstrate the effectiveness of the proposed wheel lock attack policy. 
    more » « less
    Free, publicly-accessible full text available August 20, 2024
  3. This paper presents a novel material spectroscopy approach to facial presentation–attack–defense (PAD). Best-in-class PAD methods typically detect artifacts in the 3D space. This paper proposes similar features can be achieved in a monocular, single-frame approach by using controlled light. A mathematical model is produced to show how live faces and their spoof counterparts have unique reflectance patterns due to geometry and albedo. A rigorous dataset is collected to evaluate this proposal: 30 diverse adults and their spoofs (paper-mask, display-replay, spandex-mask and COVID mask) under varied pose, position, and lighting for 80,000 unique frames. A panel of 13 texture classifiers are then benchmarked to verify the hypothesis. The experimental results are excellent. The material spectroscopy process enables a conventional MobileNetV3 network to achieve 0.8% average-classification-error rate, outperforming the selected state-of-the-art algorithms. This demonstrates the proposed imaging methodology generates extremely robust features. 
    more » « less
  4. In face of an increasing number of automotive cyber-physical threat scenarios, the issue of adversarial destabilization of the lateral motion of target vehicles through direct attacks on their steering systems has been extensively studied. A more subtle question is whether a cyberattacker can destabilize the target vehicle lateral motion through improper engagement of the vehicle brakes and/or anti-lock braking systems (ABS). Motivated by such a question, this paper investigates the impact of cyber-physical attacks that exploit the braking/ABS systems to adversely affect the lateral motion stability of the targeted vehicles. Using a hybrid physical/dynamic tire-road friction model, it is shown that if a braking system/ABS attacker manages to continuously vary the longitudinal slips of the wheels, they can violate the necessary conditions for asymptotic stability of the underlying linear time-varying (LTV) dynamics of the lateral motion. Furthermore, the minimal perturbations of the wheel longitudinal slips that result in lateral motion instability under fixed slip values are derived. Finally, a real-time algorithm for monitoring the lateral motion dynamics of vehicles against braking/ABS cyber-physical attacks is devised. This algorithm, which can be efficiently computed using the modest computational resources of automotive embedded processors, can be utilized along with other intrusion detection techniques to infer whether a vehicle braking system/ABS is experiencing a cyber-physical attack. Numerical simulations in the presence of realistic CAN bus delays, destabilizing slip value perturbations obtained from solving quadratic programs on an embedded ARM Cortex-M3 emulator, and side-wind gusts demonstrate the effectiveness of the proposed methodology. 
    more » « less
  5. The Controller Area Network (CAN) protocol used in vehicles today was designed to be fast, reliable, and robust. However, it is inherently insecure due to its lack of any kind of message authentication. Despite this, CAN is still used extensively in the automotive industry for various electronic control units (ECUs) and sensors which perform critical functions such as engine control. This paper presents a novel methodology for in-vehicle security through fingerprinting of ECUs. The proposed research uses the fingerprints injected in the signal due to material imperfections and semiconductor impurities. By extracting features from the physical CAN signal and using them as inputs for a machine learning algorithm, it is possible to determine the sender ECU of a packet. A high classification accuracy of up to 100.0% is possible when every node on the bus has a sufficiently different channel length. 
    more » « less
  6. There is ample evidence in the automotive cybersecurity literature that the car brake ECUs can be maliciously reprogrammed. Motivated by such threat, this paper investigates the capabilities of an adversary who can directly control the frictional brake actuators and would like to induce wheel lockup conditions leading to catastrophic road injuries. This paper demonstrates that the adversary despite having a limited knowledge of the tire-road interaction characteristics has the capability of driving the states of the vehicle traction dynamics to a vicinity of the lockup manifold in a finite time by means of a properly designed attack policy for the frictional brakes. This attack policy relies on employing a predefined-time controller and a nonlinear disturbance observer acting on the wheel slip error dynamics. Simulations under various road conditions demonstrate the effectiveness of the proposed attack policy. 
    more » « less
  7. Motivated by ample evidence in the automotive cybersecurity literature that the car brake ECUs can be maliciously reprogrammed, it has been shown that an adversary who can directly control the frictional brake actuators can induce wheel lockup conditions despite having a limited knowledge of the tire-road interaction characteristics~\cite{mohammadi2021acc}. In this paper, we investigate the destabilizing effect of such wheel lockup attacks on the lateral motion stability of vehicles from a robust stability perspective. Furthermore, we propose a quadratic programming (QP) problem that the adversary can solve for finding the optimal destabilizing longitudinal slip reference values. 
    more » « less
  8. Face-swap-attacks (FSAs) are a new threat to face recognition systems. FSAs are essentially imperceptible replay-attacks using an injection device and generative networks. By placing the device between the camera and computer device, attackers can present any face as desired. This is particularly potent as it also maintains liveliness features, as it is a sophisticated alternation of a real person, and as it can go undetected by traditional anti-spoofing methods. To address FSAs, this research proposes a noise-verification framework. Even the best generative networks today leave alteration traces in the photo-response noise profile; these are detected by doing a comparison of challenge images against the camera enrollment. This research also introduces compression and sub-zone analysis for efficiency. Benchmarking with open-source tampering-detection algorithms shows the proposed compressed-PRNU verification robustly verifies facial-image authenticity while being significantly faster. This demonstrates a novel efficiency for mitigating face-swap-attacks, including denial-of-service attacks. 
    more » « less